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Abstract: For the low-dimensional dynamical system model to study dynamics properties of Navier-Stokes equations, it is
very important that the attraction domain of the low-dimensional model is the same as that of Navier-Stokes equations.
However, to date, there is no universal approach to ensure this purpose for general problems. Herein, it is found that any

low-dimensional model based on spatial bases, such as proper orthogonal decomposition bases, optimal spatial bases, and
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other classical spatial bases, is not predictable, i.e., the error increases with the time evolution of the flow field. With the
theoretical framework for building optimal dynamical systems and the new concept of spatiotemporal-coupling spectrum
expansion, the low-dimensional model for compressible Navier-Stokes equations was constructed to approximate the
numerical solution to large-eddy simulation equations, and the numerical results and novel time evolution of
spatiotemporal-coupling bases were given. The entire field error is typically below 107%, and the average error at each grid
point is below 10°%. The spatiotemporal-coupling optimal low-dimensional dynamical systems can ensure that the
attraction domain of the low-dimensional model is the same as that of Navier-Stokes equations. Therefore, characteristic
dynamics properties of spatiotemporal-coupling optimal low-dimensional dynamical systems are the same as those of real

flow.

Key words: spatiotemporal spectrum expansion; spatiotemporal-coupling optimal low-dimensional dynamical system;

compressible Navier-Stokes equations; large-eddy simulation; quantitative comparison

1 Introduction and Overview

1.1 Research Background

For a long time, mathematicians and physicists have been concerned with the solution and research of PDEs
(partial differential equations). However, except for a few simple cases, it is very difficult to solve the Navier-Stokes
equations. For the general 3D flow problems, the existence and uniqueness of the theoretical solution have not been
proven'’, and it is extremely difficult to study complex flows, such as turbulence.

In the long-term study of turbulence, organized large-scale structures have been found in seemingly disordered
flow, i.e., coherent structures, which are composed of vortices with different scales. These coherent structures play a
decisive role in the generation and development of turbulence. The study of coherent structures and the estab-
lishment and analysis of turbulent low-dimensional dynamical systems are one of the key perspectives to
understand the physical essence and law of turbulence.

From the perspective of dynamical system theory, the Navier-Stokes equations belong to an infinite
dimensional dynamical system. To study the variation law of its solution with parameters, one of the more feasible
methods is to study the nonlinear dynamic characteristics of its low-dimensional dynamical system(LDDS), that is,
the dynamical system of infinite-dimensional PDEs is reduced to the finite low-dimensional dynamical system"”,
i.e., a set of ordinary differential equations, and the main characteristics of the original system are retained in the
finite-dimensional system to the greatest extent. Therefore, for some infinite-dimensional dynamical systems of
PDEs, the long-term behaviour and dynamic characteristics can be described and studied in finite-dimensional
dynamical systems. This kind of nonlinear dynamic behaviour with the changes of characteristic parameters
(including the Reynolds number, Mach number, etc.) plays an important role in the study of complex flows
(including the occurrence, development and interaction of instability, turbulence, shock waves, etc.).

In recent years, many researchers"” have given attention to the modelling and analysis of low-dimensional
dynamical systems in turbulence research. Through the Galerkin projection of the Navier-Stokes equations onto a set
of suitable bases functions, a low-dimensional dynamical system model consisting of ordinary differential equations
with time-varying spectral coefficients was obtained.

1.2 The Construction Methods for Low-Dimensional Dynamical System Models

Dynamical system modelling methods can be divided into the following two categories according to the

relationship with PDEs.
1.2.1 The Modelling Method Independent of PDEs
The Galerkin method™ based on the Fourier decomposition and the local Taylor expansion” of flow fields are

commonly used to build low-dimensional dynamical systems. The modelling method of energy stability analysis''*""
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was proposed by Lumley et al., which extracts the flow structure with the largest part of the kinetic energy growth
rate, constructs the bases, and then analyses the coherent structure of turbulence.
1.2.2  The Modelling Methods Related to PDEs

(D The POD (proper orthogonal decomposition) methods

The essence of this method is to extract the orthogonal bases in the sense of least squares from the numerical
simulation or experimental data objectively without prejudice and use the linear combination of fewer bases to
approximate and describe the characteristics of the original database and physical process'”. Therefore, it is an
efficient dimension reduction method.

The application of the POD method can be traced back to the work of Italian geometer Beltrami in 1873 and
was first proposed by ref. [13]. It is also called Karkunen-Loéve decomposition (in meteorology, it is called the
principal component analysis method"*'). Hofmes and Lumley et al.”'*'>"* introduced the POD method to the study
of turbulence for the first time. Through the Galerkin projection of Navier-Stokes equations on the POD bases, a set
of low-dimensional models were obtained, and then, the flow characteristics were analysed. However, their low-
dimensional models must be built on the known turbulence database, and there are serious problems in the
satisfaction of incompressibility and boundary conditions.

It must be pointed out that the POD method has 3 limitations as follow. First, the method is limited to the form
of the inner product optimal condition. When the essential characteristics of the system cannot be expressed with the
inner product optimal conditions, the method cannot be used to analyse some key regions (including the generation
of boundary vorticity flow, etc.) or accurately describe the important flow phenomena at a certain moment
(including the dynamic characteristics of vortex breakdown, etc.). Second, due to the existence of projection errors,
the low-dimensional dynamical system constructed with the POD method is not necessarily optimal. In the strict
sense, this method is only a better means of data processing and analysis. Third, POD bases must be obtained from
known databases and cannot be obtained directly from PDEs.

@ The OLDDS (optimal low-dimensional dynamical system) theory

To further reduce the dimension and retain the flow field characteristics as much as possible, Wu and Shi!'*"”
proposed the optimization theory for flow database analysis and low-dimensional dynamical systems, which is a
more extensive new theory completely different from the POD method. The basic idea of the OLDDS theory is to
determine the N-order optimal bases (OBs) to form the N-order intrinsic coordinate system with the methods of
optimal control and functional analysis. In this way, the N-order optimal hyperplane derived from this intrinsic
coordinate system can approach the exact solution to the infinite-dimensional dynamical system (infinite-
dimensional manifold), in the sense of the minimum norm at the parameter value of the studied system, in a wide
range of parameters.

Since 1994, the OLDDS theory"**” has been further developed. The flow field structures of a 2D square cavity
flow and a backstage step flow were studied, and the Lorenz OLDDS was established to analyse its nonlinear
dynamic characteristics. Recently, based on the optimal functional of the minimum weighted residuals, the OLDDS
model for the 3D incompressible Navier-Stokes equations™* was obtained. For the first time, the authors applied the
HWD (helical-wave decomposition) method to the modelling of OLDDS and proposed the generalized HWD-POD
OLDDS method of coherent structures”’, and based on this method, the coherent structures of 3D channel
turbulence and the characteristics of its dynamical system were studied. Furthermore, the optimal generalized
helical-wave dynamical system of 3D backward-facing step flow was established””, and the turbulent elements, i.e.,
optimal GHWD (generalized helical-wave decomposition) vortices with spatial concentration and slow time-varying
characteristics, were obtained.

Recently, the authors and their students developed an OLDDS modelling method for the 3D incompressible
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Navier-Stokes equations that satisfies both the arbitrary velocity boundary conditions and the incompressible
conditions with the OLDDS modelling method, obtaining the OLDDS model for 3D square cylinder groups
(including 1, 2 and 3 square cylinders). Moreover, dynamical system analysis tools (such as the phase space orbit,
the Poincaré section, the power spectrum, the Lyapunov exponent set analysis and the bifurcation analysis) were
used to analyse the complex dynamical system characteristics of 3D square cylinder groups”**". It is found that the
dynamic characteristics of the wake of a square cylinder are limit cycles. On the other hand, the fluctuating velocity
characteristics of the wake of 2 square cylinders are more complicated limit cycles, and the behaviour of the
fluctuating OLDDS on its bifurcation diagram is similar to that of period doubling bifurcation, which indicates that
more complex dynamic behaviour begins to appear. Based on the dynamical system analysis of OLDDS models
(with truncation N = 10) of the 3 square cylinder wakes, it is found that the Poincaré section of the wake of 3 square
cylinders exhibits chaotic trajectories and broadband power spectra. Through the analysis of its Lyapunov exponent
set, it is found that 6 of its 10 Lyapunov exponents are positive, 1 is 0 and 3 are negative, which indicates that the
OLDDS behaviour of the wake of 3 square cylinders is chaotic. Thus, it can be seen that in the heat exchanger
application, the complexity of the wake can be enhanced by multi-component flow, to promote fluid mixing and
improve heat exchange efficiency. It also can be seen that the OLDDS method provides a feasible method to solve
the key problems in turbulence research.

It is very difficult to model and analyse the low-dimensional dynamical system of compressible Navier-Stokes
equations, there are almost no reports addressing this aspect. The outline of the rest of this paper is as follows. The
research objectives are introduced in section 2. The construction theory of spatiotemporal-coupling optimal low-
dimensional dynamical system (SCOLDDS) for the general problem is presented in section 3. The construction
theory of SCOLDDS for the compressible Navier-Stokes equations is presented in section 4. Applications of

SCOLDDS are shown in section 5. Concluding remarks are made in section 6.

2 Research Objectives

To analyse the low-dimensional dynamical system of compressible Navier-Stokes equations, the most
important thing is to obtain a suitable low-dimensional dynamical system model which can reflect the characteristics
of the original system as much as possible. The modelling method of OLDDS shall satisfy the following 2
conditions:

(D Various boundary conditions. However, for complex problems, the usual homogenization cannot be used
because it turns one complex problem into another equally complex one. In the Galerkin spectrum method, the basis
function that satisfies the boundary conditions is actually a sufficient condition, and it can only be used for periodic
boundary conditions and nonslip velocity boundary conditions. Therefore, for the general problem, when the
Galerkin spectrum method is used to model the OLDDS and the basis function is still used to satisfy the boundary
conditions, the following 2 problems will be encountered: first, for given velocity boundary conditions (such as
inflow boundary conditions), how to solve the problem of “1 to many” , i.e., how to assign a velocity boundary
condition to N optimal bases; second, how to solve the strong solution boundary condition proposed by unsteady
boundary conditions (such as the time-varying outflow boundary condition), given that any spatial basis function can
only satisfy the weak solution form of the unsteady boundary condition, that is, it can only satisfy the time-averaging
unsteady boundary condition.

(2 Quantitative comparison to the numerical simulation results of computational fluid dynamics (CFD). The
most substantial limitation of the traditional low-dimensional dynamical system modelling method is that, it cannot
establish the low-dimensional dynamical system model based on an accurate quantitative comparison with high-

dimensional CFD results because only when the dimension of classical spectrum expansion is very large (hundreds
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of thousands of dimensions), can it meet the requirement of accurate quantitative comparison. However, the
calculation of long-term characteristics of turbulence with high-dimensional dynamical system models is very
cumbersome. Therefore, the traditional dynamical system research adopts a very low-dimensional dynamical system
model (such as the 3D Lorenz model), but the essential dynamical system characteristics of the low-dimensional
model are likely to be completely different from those of the real turbulence (that is, they are in different regions of
the functional space).

Therefore, it is necessary to extend the OLDDS modelling theory. In this paper, a SCOLDDS modelling
method was proposed to obtain a SCOLDDS model for compressible Navier-Stokes equations that satisfies various
complex geometrical and physical boundary conditions and can be quantitatively compared with high-dimensional
numerical simulation results.

The SCOLDDS of turbulence established based on an accurate quantitative comparison is not only in the same
region of functional space as the real turbulence dynamical system but its SCOBs (spatiotemporal-coupling optimal
bases) are also coherent structures, and the intrinsic optimal bases are very low-dimensional (such as the 3rd-order
SCOBs used in this study); therefore, the very low-dimensional SCOLDDS can be obtained, which can greatly

reduce the amount of calculation in the study of long-term characteristics of turbulent dynamical systems.

3 The Construction Theory of SCOLDDS for General Problem

3.1 The Basic Idea and the Essential Innovation of Optimal Bases

The basic idea of the OLDDS theory for PDEs is shown in fig. 1; i.e., with the methods of optimal control and
functional analysis, the N-order intrinsic coordinate system composed of N-order optimal bases is obtained so that
the N-order optimal hyperplane constructed from the N-order intrinsic coordinate system can approach the exact
solution to the infinite-dimensional dynamical system (infinite-dimensional manifold) well in the sense of the

minimum norm at the parameter value of the studied system and in a wide range of parameters.

normed space
o

under a certain expansion parameter :
&%)
ol

— €, (x)

exact solution: infinite-dimensional manifold

—» optimal basis &, (x): low-dimensional hyperplane
approximate solution
-===» genernal basis &,(x): such as POD basis
Fig. 1 The basic idea of the OLDDS theory
Note To get the meanings of different colors in the figure, the readers could refer to the electronic webpage of this article.

The most substantial difference between the N-order optimal bases and the traditional spectral expansion is that

N
in the spectral expansion u(x,?) ~ Z a; (1) & of system variables u(x, ), optimal bases &, are not given in advance,

k=1
and the N-order optimal bases that depend on the given differential equations and initial and boundary conditions are
obtained with the optimal control method under the condition of satisfying the quantitative comparison, the given
optimal functional and other constraints. The low-dimensional dynamical system model based on the optimal bases
&, is an OLDDS.

The starting point of the theory of low-dimensional dynamical systems for PDEs is spectral expansion:

o

N
w0 =) af =uy+ur ~uy = Y axée, e
k=1

k=1
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where ug is the remainder, N is the order of spectral expansion, & are basis functions, also called spectral functions.
For classical spectral expansion, & are known spatial bases, i.e., & = &i(x). For optimal bases, & = &;(x) are not
given in advance. The N-order optimal bases that depend on the given differential equations and initial and boundary
conditions are obtained with the optimal control method under the condition of satisfying the given optimal function
and other constraints.

The essential innovation of the theory of SCOLDDS proposed in this paper is that the basis functions are N-
order optimal bases &; related to physical problems, and if the SCOBs are used to represent the spatiotemporal-
coupling characteristics of the system, they are SCOBs & = &;(x,1), or if the time-averaged characteristic of the
system is represented by the spatial optimal bases, they are optimal spatial bases & = &;(x).

Because the snapshot POD bases must satisfy the ergodic condition of each state, period 7 cannot be too small,
so the real-time spatiotemporal-coupling POD bases cannot be obtained. On the other hand, because all
spatiotemporal flow data must be used to find the POD bases, when T is very large, the amount of calculation of
POD will be to high, so the full time-space POD bases cannot be obtained. Therefore, it is impossible to obtain the
SCOLDDS model based on POD bases.

3.2 The Mathematical Problem and the Construction of Low-Dimensional Models
3.2.1 The Mathematical Problem
For the initial boundary value problem of general PDEs, whose governing equations, initial conditions and

boundary conditions are as follow:

Z—IZ+L(u)=O, xeQ >0, (2)
u(x,0)=uy(x), x e,
lau+pBVu - n)y, = g(x,1), x€oR, t>0,
where n is the normal direction of the boundary, and g (x,) are values at boundaries.
Suppose that the problem is studied in the Sobolev space"”” with norm, i.e.,
u(x,1) e W (Qr), 3

where Qr = Qx[0,T], indexes m and p depend on the smoothness of u; p =2q, m,q € N, N are sets of all positive

integers. The norm in the Sobolev space is defined as

1/p
Z ||Dau||1;2(g7‘)"] ) 4

|| <m

leellymnr o,y =

where D%u is a generalized difference of order @, and L7 (Qr) is the set of all (p) integrable functions in Qr; if

u=(uy,uz, ,uy)’, then
N 1/p
- p
el vy = [jg kz_;udedt) . (s)

The following defines basis functions & (k = 1,2,---,c0) in the Sobolev space as follows, and expanded space 8

satisfying the following conditions:
B={[&])lx € QR & € W™P(Q)). (6)

Hence, suppose that exact solution u (x,?) of eq. (2) can be expressed as an infinite-dimensional weak solution
in the space B as follows:

(e, = Y aée 2
k=1

Next, further limit the problem to the Hilbert space™” H* (€2) with inner products, and let basis functions

satisfy the orthogonality condition, one can define expanded functional space B as
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B={[&]il ¥ € QCR", & € H(Q), (616D = Sub, (3
where (,) expresses the inner products in H* (Q), i.e.,

60 = | &-£ae. 9

These forms correspond to infinite-dimensional dynamical systems.
3.2.2  The Construction of Low-Dimensional Models
Next, further limit the problem to the N-order Hilbert space”” H" () with inner products, and let basis
functions satisfy the orthogonality condition, one can define expanded functional space By as
By = (&1Ll € QR & e HY(Q), (66D = 8 ), (10)

where (,) expresses the 12 inner products in H" (Q), i.e.,

6= | &-£a0. an

The first N items of extraction formula eq. (7) are truncated to obtain low-dimensional approximate spectral

expansion u (x,7) in By as

ax ()&, 12

1

N
ulx,t)=uyx,t)+ugr(x,t) ~uy(x,t)=
k=

where ug (x,7) is the remainder, a; (f) and & (k=1,2,---,N,---, the same below) are all unknown functions that

depend on specific problems satisfying

akz(u,fk). (13>
Substituting eq. (12) into eq. (2) and projecting it onto basis &, one obtains Galerkin projection equation"’ Gy
as follows:
0
GZ:(%—FL(uN),fk):O. (14)

The Galerkin projection equation is a low-dimensional model for eq. (2), that is, a low-dimensional dynamical

system, which are ordinary differential equations of a (¢), and have the following form:

ak,t(t):f(ak’fk’vgkf")’ (15)

13 ”»

where subscript “,¢” denotes the derivative with respect to time. Thus, the dimensionality reduction approximation
of eq. (2) is realized. It is noted that dimension D of a dynamical system is defined as order of spectral expansion N
times number of independent flow variables M.

The low-dimensional dynamical system model is based on the optimal bases &;.
3.2.3 The Optimal Problem of Obtaining the Optimal Basis

It is necessary to conduct a reasonable analysis and assumption of the physical problem and put forward the
appropriate optimal conditions, and construct optimal objective functional J (£); then, the construction of OLDDS is

reduced to the following optimization problem:

min  J(&),
{ st Glap&) =0, (16)
&r € By,

where Gf (ax, &) = 0 shows that eq. (14) consists of the functions of a; and &;.

From eq. (16), it can be seen that given generalized optimal objective functional J(&;), the key to constructing
the OLDDS is to obtain optimal basis &;. Therefore, various optimization methods can be used to obtain the optimal
basis, including the conjugate gradient local optimization algorithm, local optimization programs such as conmax,
and global optimization algorithms such as genetic algorithms and deep learning methods, etc.

Next, the specific method of conjugate gradient optimization is introduced. The following two sets of equations
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can be obtained through variational operation of objective functional J and let VJ8 = 0:

ak,t :f(aksfk’vé‘k"")s (17&)
N oJf

VIE= ) —£=0, (17h)
2.7

where Jf is the kth component of generalized optimal objective functional J¢, which is called the Hamiltonian
function™". Optimal basis £, can be obtained when eq. (17) is solved simultaneously.

Next, the 2 sets of equations in eq. (17) are explained.

(D Ordinary differential eq. (17a) of a(¢): it is the OLDDS equation, which contains the complex nonlinear
dynamical characteristics (such as chaos), and the initial conditions for solving the equation are a; (0) = (ug,&).

) Generalized optimal objective functional VJ¢ gradient eq. (17b): for the equations of basis functions &,

gradient VJ# of the generalized optimal objective functional is defined as
i+ 86050 = [ V¥ - 86 d2+ OIS, (18)

The solution to equation &; yields the optimal basis. On the one hand, the optimal basis are used to construct the
OLDDS; on the other hand, the solution can achieve the best approximation of the exact solution of eq. (2), which
reflects the mathematical characteristics of eq. (2) with physical significance. It is worth noting that due to the effect
of boundary conditions, the equations of the functional gradient in 2 and at boundary 022 are different, and different

equations are provided for different boundary conditions.

4 The Construction Theory of SCOLDDS for Compressible Navier-Stokes Equations

4.1 Compressible Navier-Stokes Equations

In Cartesian coordinates, the dimensionless 3D unsteady compressible Navier-Stokes equations”” (including
the continuity equation, the momentum equation, the energy equation, the state equation, and the initial and
boundary conditions, with the exception of hypersonic flow, i.e., regardless of the ionizing radiation of a fluid) are

considered:
o+ (ouj) =0,

P 1 1
(pl/ti)yl + (puiuj + Wsi_i)j = ﬁpﬁ + EO’,‘]‘J,

E,+

p ) ] 1 1
E+ wi| =T )+ —(oiup)
2 |4 )i jUi).j
( yYMa g ¢ Re (19

p=pT,

(i, E,T) = (ui,p, E,T)
(0,0.j1)ae = (0B, PB 1)),
(ui, ui jnj)po = (upi, up; jn;),

(T,T jnj)og = (T, Tp n;),

where the initial conditions and boundary conditions are determined according to specific problems, and the

=0’

variables with subscripts B are their boundary values, p, p and 7 are the dimensionless density, pressure and
temperature, respectively, u; is the dimensionless velocity field, and f; is the dimensionless mass force. Here, the
ideal gas model is used for the thermodynamics relationship, and it can be seen from ref. [33] that the state equation
of an ideal gas is p = pR,T, Ry = %, where R is a universal gas constant that is independent of gas type and gas
constant R, is related to gas type, and 47 is the Molar mass of the gas. Specific heat ratio y = ¢, /c, is set equal to 1.4,

where ¢, and ¢, are the isobaric specific heat and isochoric specific heat, respectively. The 4 control parameters are

defined as: characteristic Froude number Fr= characteristic Prandtl number Pr = poyRg/[(y — Dkoo],

Us
VeoLleo
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characteristic Reynolds number Re = po U Lo /o and characteristic Mach number Ma = U, /c«. The characteristic
Prandtl number is Pr = 0.72, and parameter « is defined as a = PrRe(y — 1)Ma?*. Dimensionless viscous stress tensor

o;j and dimensionless total energy E are defined as

2
oij = plij+ i) = 108 ij, (205
p 1
E=—"— 4 —p(uuup), 2D
Oy M Pt

where 6 = u;; is the dimensionless velocity divergence.

In compressible turbulence, it is necessary to consider the influence of temperature change on dynamic

viscosity coefficient u and heat conduction coefficient x B4 e,

—1.5
1.404 9T
p= (22)
T +0.404 9
—1.5
oo LaoaoT (23)
T +0.4049

From ref. [35], noe can see that temperature 7 in Sutherland’s formula is a spatially averaged temperature; therefore,
in the modelling of the SCOLDDS and the dynamical system analysis, let u and « be constants, their values is
determined the spatial-average initial temperature T, from eq. (22) and eq. (23). After the whole calculation, for the
case in which the values of all variables are obtained in the whole flow field, temperature field 7'(x,7) at different
moments is substituted into Sutherland formula eq. (22) and eq. (23) to obtain the approximate spatiotemporal
distribution values of u(x,t) and «(x,7). It must be pointed out that these approximate spatiotemporal distribution
values of u(x,1) and «(x,r) obtained after the completion of the whole calculation have no influence on the results of
the fluid field calculation and the dynamical system analysis.

Let p=pT, O =u;;, a=PrRe(y—1)Ma?, eq. (20) and eq. (21) be introduced into eq. (19); then, 5 scalar
governing equations (including the continuity equation, 3 scalar momentum equations and the energy equation) of
compressible flow are obtained, through which 5 flow variables can be obtained (including p, T, u;):

P+ (ouj),;=0,

T 1 2
(ou) 1 + (Puiuj + }%{12517) = ﬁpfi + ]% (i j+uj;)— guh,héij} E

JJ 2
pT 1 pT 1 pT
] T s 2T L)
[(7—1)7Ma2 2 + U=1yMa* 2 yma* |}
24>
3

K U 2
—T“+_{(u..+uA4)__u]]6A.:|uA}
2551 1,] ol ,hYij i )
PrRe(y—1)Ma Re ¥

0, T) = (uinp, T)|

(,p,jn))ae = (0B, LB, 1)),

(i, ui jnj)oo = (upi, Ui jn;),

(T,T jnj)og = (T, Tg n;).

4.2 Spatiotemporal-Coupling Low-Dimensional Dynamical Systems for Compressible
Navier-Stokes Equations and Numerical Realization of Boundary Conditions

4.2.1 Spatiotemporal-Coupling Low-Dimensional Dynamical Systems for Compressible Navier-Stokes Equations
The SCOLDDS modelling theory in section 3 are applied to the compressible Navier-Stokes equations to derive
the SCOLDDS equations.

Define functional spaces 8, By, and B}, to satisfy conditions:
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B = {[(k]szll L e HY (Q), Lz {1 dQ = 8y, and ¢, second-order differentiable},
By = { [Eilis,| € € HN (Q), L}é‘kifﬁ dQ = 8y, and &; second-order differentiable} , (25
Bl = {[nk]sz e HY (Q), jg e A2 = Oy, and 1, second-order differentiable} .

Express u;, p and T in compressible Navier-Stokes equations eq. (24) by following low-dimensional approxi-
mations in functional spaces By, 85, and B}, respectively:
{p = bl + pr = bils,
Ui = Q& + ug; ~ aréi, (26)
T = cimyc+Tr = i,
where expansion order N is omitted and left unwritten, similarly hereinafter. With the mass force omitted and eq.
(26) substituted into eq. (24), the low-dimensional truncated compressible Navier-Stokes equations expressed by the
Nth basis are obtained as follow:
b1+ biar($iéx)),; = 0,

1
(biaw) 1Li&ki + braxam(§i&i&m)).,j + ——=bicm(Eimmdij),j—
yMa

U 2
Re [ak'fki, jtaéei— ga/(flh,héij)}’j =0,

1
(bicm) « E(blakam),tglfkhfrnh+

1
- . 5 m +
G-y

1 1 1 Q7
—————biliCutim + =biiarEnanémn + ——=bilicpnim | anéni| —
[((y—l)yMaz 11Cm, > 110k ErnAmEmn M 11CmT ) §]L

mcnnn, i~ % [(kaki, it aéei— %alflh,héi j) angm]‘i =0,
(@réi»bidis cmnm) = (Uoi» 0, To),

(bidi, bidr, jn oo = (0B, PB,j1;),

(akéri> arériinj)oo = (Ui, Ui jn;),

(exnies crmr, o = (Tp, Tp jnj).

To satisfy the boundary conditions in the equations of a low-dimensional dynamical system, the approximate

density field, velocity field and temperature field satisfying the boundary conditions are introduced, respectively,

_ {akgk,-, in 2100, 28)

@)™, on 0%,

_ {bkg“k, in 200, 20)
(k)™ on 99,

_ {cknk, 9 in Q\0Q, (30)
()™, on 02,

where the specific forms of (aé&i)™, (k&)™ and (cx)® are determined by the boundary conditions, respectively,
and the specific implementation process is shown in section 4.2.2.

Next, by the boundary condition treatment, the specific form of Galerkin projection equations of the continuity
equation, momentum equation and energy equation in eq. (27) is derived to obtain the dynamical system equations
for compressible Navier-Stokes equations.

(D The Galerkin projection of the continuity equation on arbitrary density basis ¢,

The Galerkin projection of the continuity equation (the 1st equation in eq. (27)) on arbitrary density bases ¢, is

G = (b1ul1, ) + (bia(Liér)) - &0 3D

The derivation of each term of eq. (31) is as follows:
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(bl,zé/l:é’r) = br,t’ (32)
(bian(Giig) 1 6r) = bra |, Gy 4 A+ bray [ 1j61¢, 42 =
[ DU de+ [ DU, de. (33)

Therefore, the Galerkin projection expression of the continuity equation on arbitrary density basis ¢, is

obtained:

G = b+ | DU, dQ+ | D ¢, dQ. (34)

(2 The Galerkin projection of the momentum equation on arbitrary velocity basis &

The Galerkin projection of the momentum equation (the 2nd equation in eq. (27)) on arbitrary velocity basis &,; is

u 1
G = (biaw) 1 &iéir i) + (D1akan(Lrilny), j» Eri) + )szan(({ﬂ]m8 ij).jrEri)—

2
Rie {[akfki,j +aréiji— §az(§lh,h§ ij)]’j ,fn'} . (35)

The derivation of each item in eq. (35) is as follows:

(i) i) = bran, [ Gt 42+ by [ Gt 42 =
i | Déatr 42+ by, | LUy a2, (36)

1
(biaxam(§i&i&m)), j»&ri) + ———=bicm(Emmdij),j, €ri) =
yMa

1
yMa®

biagan [ (@iién). i 42+

1
yMa?

bicw | (mmdiy) i 42 =

| @uy £ 4+ | (@78, a0, (37

7 2 u 2
Re { [akfki,j +aréyji— gal(‘flh,h 6i,/‘)}’j ,fn‘} =~ Zs fg (ak‘fki, it aéei— gal(é‘:lh,héij) . & dQ =

2
_E Q(rui’j"'(uj,i_g(uh,héij),ifri do. (38)

Therefore, the Galerkin projection expression of the momentum equation on arbitrary velocity bases &,; is

obtained as follows:

G‘fu = Qi jg ngié:ri doQ+ bl’t fg {l(Llié‘:ri dQ+

1
fg(@ﬂiﬂj), € dQ+ Y LZ(Z)T 8;j), jén dQ—
2
Rie J.Q ('Lli,j +U;;i— 5%,,;,6,»,) .fr,' do. (10)
J

(3 The Galerkin projection of the energy equation (the 3rd equation in eq. (27)) on arbitrary temperature basis 7, is

1
G = (biew), Ctmo 1)+ = (b1axan) s (G 1) +
2

1
(y—yMa’
[( b+ Sbidiakinnnn + —— i )-’E]
. 5 Cnllm + 3 a hAmSm 5 CnMlm | QnSnj| >Mr ¢ —
(= yMa? 161CmT] 5 VI61kS ki h M 161CmT] ¢ ]’j n

K

u 2
> Cn\Nn,jjsNr) — 75— ij T+ i 5 161" nSni| SMr (- (40)
PrRe(y - DMd®* (1010:) = &g {[(akfk AR ’)a . L n}

The projection of each item in eq. (40) on arbitrary temperature basis 7, is deduced as follows:
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1
(blCm),tm &nmsnr) =
1
Wé‘m,tbl nglnmnr dQ+ W mbl tf é’lnmnr dQ =
1 1
W mtj Dnuny dQ+ mb/’,\[@{ﬂ'nr dQo, 1)

1
E(blakam),t (Gi&xnémnsnyr) =
1
3 (biaray,) , fg Gi&inpnn, dQ =

1 1 1
Ebl’l J:Q glﬂhqflhnr dQ+ Eak,, I_Q Dé:khwhi]r dQ+ Eam,t jg D(L(hfmhf]r dQ =

1
Sbu [ Gt Ui, A2+ a | DéUin, 42, (42)

1 1 1
———=bilicnim + = biliarErnaméimn + bilic anéni| Snrp =
{[( O~ DM iCmMm + 5 D11 akEienmEmn ME 15 mnm) ‘f-:n]]’j 77}

1
(Q/I)—Mzblcma"f (&ittménj). e 4Q + = biaranay j G knEmn&n ),y A2+

YMa zblcmanj ({lnmfnj) Jr dQ =

mf BT U 1, 42+ 3 f (OUUU,) m, dQ+

) m, dQ =
yMz i.gn

W s | @oTUp a0+ 5 : j (OUUU), 1, 42, (43)

- (W jj2117)
_ ¢ M) =
PrRe(y — )Md® . ijo 11

K K
-, | g dQ=————— | 7, dQ, (44)
PrRe(y — 1)Md® LG’“" PrRe(y — 1)Md® Lz 4T

u 2
Re ak-fki,j+ﬂk§kj,i—§az§1h,/15ij i ’j,flr =

u 2
~ Rgn fg (fm‘ (akfki,j +aiyji— galé:lh,héi j)),j n,dQ =

- R_e ((L( ((Ll, J +(Llj, ‘Llh,hf),-j)) nr do. (45)
»J
Therefore, the Galerkin projection expression of the energy equation on arbitrary temperature basis 7, is
obtained:
1 1
G = ———c,i | Dnny A2+ ———b T ,d_Q+—b U Uy, dQ+
o~ DyyMd ,zfQ Ml = yMZ z,eréU n z,zf GUU

ais | Déwthin, d9+mfg(mu) 7 dQ+ > j (DUs;) 1, de2-

K

WI Jitlr Q——f[ (“L{i,j+“uj,i—§Wh,h6ij)]jn,d9. (46)

To summarize, the Galerkin projection equations of the following compressible Navier-Stokes equations are

obtained:
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Gfp = br,t + IQDV/IN@ do+ IQD,JW]{r an
Gl = a, [ Deut dQ+by, [ Ui, 40+

Jo(puits) gad0+ s | (DT6) 6 ao-

u
—efg(%,,-m,;,- S ,,) &1 42,

1 1 1
GE = g O Jo Dt 42 b [ T 02+ b [ Ui, 4+

(y=DyMa
1
ak”fgﬂfkhﬂhnr d9+mj (Z)T’Ll) Ny d.Q-i—Zj D(Llh(uhﬂ) n,dQ-
u jT]jnr dQ- ﬂ f [ l( lj+q/[]l 7’111,I15ij)] 'nr dQ.
5]

PrRe(y - 1)Ma* )2

Therefore, one obtains
b+ [ DU ¢ a0+ [ D it 42 =0,

au [ it A+ by, [ U dQ+ [ D UUE, d0+
fg .D(Lli,j(lfljé:rl’ do+ J:Q @(L{,’u,',_,‘fri do+

1
? J;-) Dﬂ'f,j dQ+ W jg D(r,jgrj dQ-

Ll 2
Re fQ ((u"*ff +Ujij - 3 (Llh,hi) &;dQ2=0,

1 1
e |, Ditu 42+ bus [ 6T, 42+ Sby, | G, 42+

(y—lyMa® ™ (y - lyyMd*

1
a DéRU, rdQ+— D TUnR AR+ ———— | DT jUm, d+
k,zL) EnUnn - DM aj in (y—l)MazL? JUm

m[ DT U, m, dQ+ = j D U Uy U, A2+ [ DU U U, A0+

1 K
- pdo-——5 | 7 .m, do-
2 Jo DUy 1 40— s [ T

]’;e (w,,w,,+w,,w,, fu,-,,-w,,,h)n, do-

I’e‘e (ww,],+wuj,~,-— fuu,,h,)n,dg 0.

From this one obtains SCOLDDS equations eq. (49) for compressible Navier-Stokes equations

I
br,t = ﬂr ’
a8 + b, B} = Bl
Cm’tCnI" + bl’tc + ag, tCIH = C,I,\/ ,

where the coefficients are shown in eq. (51). The initial conditions are as follow:

47

(48)

(49
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ax(0) = (4i(0), &), (50>
cr(0) = (T(0), 71,

Al =- (L) DU, ¢, 40+ [ D UL, dQ),
B = L) Déiér dQ,
B! = [ &t a2

{bk(O) = (p(0),40),

BIrH = —[ jg D,,-”Ll,-ﬂjfr,- dQ+ fg Z)(L(,-,j‘Lljgf,i doQ+ J:Q Z)(L{iﬂj,jgfri do+

I 2
e (J, 27800+ [ DT €d0)- £ | (fui, U - gfuh,hi)g,i dQ],
I
I _
Cnr = M J P de.
1 I (51
m__ -
S JoaiTne a2+ 3 |ttt 42,

Yl = L) DéyUpn, dQ,

1
c - _{m (fg D T U, 42+ [, DT jUm,d@+ [ DT U, m, dQ) +

1
I, Dttt a2+ 5 (L) DU Uy, 40+ [ DU, dQ) -

K U 2
PR T Jo T 42— UQ (fu,,fu,,, U U fu,,,wh,h) 7, dQ+

2
J;) (ﬂ,’ﬂi,]‘j + ‘Ll,-(L(j,ij - g(uiﬂh,hi) nr dg} }

4.2.2 The Numerical Realization of Boundary Conditions
Two methods are used to satisfy the boundary conditions, simultaneously, i.e.:
1) The optimal bases satisfying the boundary conditions are obtained with the optimal control method.
2) Boundary conditions ¥ are further satisfied in the physical space in solution of the dynamical system
equations. Next, the boundary conditions of velocity u are taken as an example.
(D Free-slip boundary conditions
(axén)™ = 0,
(ax&iisi)™ = ar(&isiaa-» (52)
(a&it)* = ar(&iti)ao-»
where superscript “ bd” represents the boundary mesh, and subscript 92~ represents a layer of mesh near the
boundary.
(2 Nonslip boundary conditions
(@)™ =0, (53)
3 Inflow boundary conditions
(@)™ = i, (54)
where uy; is the inlet velocity distribution function.
@ Continuous outflow boundary condition
(@)™ = ar(&iog-- (55)

(® Periodic boundary conditions
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{(akfki)bd = ax(&ii) 55 (56)

(@é)™ = an&aao-
where superscripts “bd” and “bd” represent a pair of periodic boundaries, and subscripts 92~ and 42 represent
layers of mesh close to a pair of periodic boundaries, respectively.

(© For the compressible Navier-Stokes equations, the density boundary condition and the temperature boundary
condition should also be satisfied. Specific methods for temperature and density are similar to the relevant parts of
the above velocity boundary conditions and will not be repeated here.

4.3 The Optimal Functional of SCOLDDS for Compressible Navier-Stokes Equations
4.3.1 The Optimal Functional that Approximates Initial Condition J and Its Gradient Equation

The optimal objective functional approximating the initial condition is
T = [ ri(0).uri(0) &2+ | (pr(0).px(0)) A2+ | (Tk(0),Tx(0)) d2 =
0 = () wi(0) - ar(0)éio) de2+
J (0= b0 p(0) - bi(0)) d2+
|, (7O = ccOn(T©) - cxOm) d2 =
Lg[u,-(O)ui(O) = 2a;(0)éxiui(0) + ar(0)éxiar(0)ér ] Q2+
J,,(0)p(0) = 25(0)p(0) + bl 0)ib(0)¢i] A2+
LZ[T(O)T(O) = 2¢O T(0) + ck (0)17xc (0)17 ] A2, (57

where u;(0),0(0), T(0) are the known initial values.
The following gradient equation can be obtained by finding the variation in eq. (57) and making the variation

ZC10:

{ak(o)fki —-u;(0) =0,
b(0) = p(0) =0, (58)
cx(O)me—T(0) = 0.
The conjugate gradient numerical optimization algorithm (see appendix A) is used to solve eq. (58).
4.3.2 The Multi-Scale Global Optimization Method

Model equation eq. (17) of the OLDDS obtained with the variational method is only the local extremum of
generalized optimal objective functional eq. (18) in functional space By, but we hope to obtain the global optimal
bases in whole space By. However, according to the fundamental theorem of global optimization: in general, one
cannot obtain the global optimal solution unless an infinite number of searches are carried out, in practical
calculations, the final convergence result depends on the selection of iterative initial basis (hereinafter referred to as
initial bases) f,(co). If ]((O) is near the global minimum of J%, the final convergence results are the global optimal bases;
otherwise, it can only converge to the local extreme point or even a saddle point of J3.

Here, a multi-scale global optimization method is proposed to find the approximate global optimal solution.
Based on the idea of coarse graining, the global optimal value is quickly located by smoothing the local extreme
points. Suppose that value distribution J# of the generalized optimal objective functional corresponding to the exact
solution to eq. (2) in space By is shown as the red curve in fig. 2. Then, to find global optimal value 4, the following
process of the double-scale global optimization method can be implemented, as follows.

1) Coarse graining: a coarse numerical scheme or grid is used to numerically simulate the equation, a set of
coarse databases is obtained. The change in generalized optimal objective functional J%* based on the coarse

database in space By is shown by the green curve in fig. 2. Coarsening makes the local extremum smooth and it can
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be regarded as a convex domain.

2) POD analysis: POD bases are extracted from the coarse database, and since POD bases are optimal for the
database, the POD basis is located at point B in fig. 2.

3) Multi-scale computing: the POD basis extracted in step 2) is processed by interpolation to obtain a set of
precise bases. Let the blue curve in fig. 2 represent the value of J¢** of the generalized optimal functional in space
By calculated in the fine grids. Then, the precise bases are located at point C in fig. 2.

4) Numerical optimization: with the precise bases obtained in step 3) as initial basis {-‘,({0), the numerical
optimization is carried out by substituting it into OLDDS model eq. (17), final convergence result & is located at

point D in fig. 2, and then, £; can be considered as the approximate global optimal basis.

Fig. 2 Schematic diagram of the double-scale global optimization method

According to the idea of double-scale global optimization, it can also be extended to additional multiple scales
to obtain more accurate results. It should be emphasized that although the coarse database is used in this method, the
database is only used to extract initial basis £9 and no longer used in the following optimization process.

4.4 The Solution Procedure

N random bases or POD bases of velocity, density and temperature can be used as the 1st, 2nd and 3rd initial
iteration bases of £, £0,7?, respectively.

1) Initialization:

(a) When the random bases are used as the initial iteration bases, the random number generator is used to
generate the initial iteration random bases. When the POD bases are used as the initial iteration bases, the CFD/LES
method is used to calculate the flow field of the 1st 500 CFD/LES time steps (At), and each flow field is taken for
every 10 CFD/LES time steps, then, 50 time sections of the flow field are obtained. From these 50 flow field data,
50 POD bases are obtained with the snapshot POD method, and the 1st N POD bases (£0,£0,70,k = 1 ~ N) are taken
as the initial iteration bases.

(b) With the optimization method which approximates the initial conditions in section 4.3, £,(¢,x;), £; (¢, x;) and
n;(t,x;) are obtained, and they are orthogonalized and normalized with the Grand-Schmidt method”. Set 7 = 0.

2) Let r = t+ MAt, where M is the number of intervals of CFD/LES time steps.

3) Use the CFD/LES method to obtain the initial field of the dynamical system used in eq. (57) at t =t + MAt.

4) With the initial iteration bases and the optimization method which approximates the initial conditions in
section 4.3, &.(t,x;), £;(t,x;) and n;(¢,x;) are obtained, and they are orthogonalized and normalized with the Grand-
Schmidt method "°.

5) By application of the initial conditions, eq. (50) is used to solve the SCOLDDS eq. (49) to obtain ay(r), bi(z)
and c,(7). The boundary conditions must be satisfied in the 4 steps of the 4th-order Runge-Kutta method, and the ill-
conditioned equation AFD method is used to preprocess the coupled equations.

6) Calculation of the physical quantities of the compressible flow field:
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ui(t, x;) = ar(HE(t, xy),
p(t,x;) = b (O (t, X)),
T(t,x;) = c@Om(t, x;).

7) Return to step 2) until the calculation is completed.

5 Applications of the Construction Theory of SCOLDDS for
Compressible Navier-Stokes Equations

In this section, since the flow fields of SCOLDDS and of compressible Navier-Stokes equations are very
similar to each other, to save space the legends of flow field nephograms are not shown.
5.1 Definitions of Relative Errors of Flow Field Variables and Proportions of

Each Order in the Whole Field

(D Relative errors of flow variables in the whole field

In the quantitative comparison of SCOLDDS models with CFD results, the following definition of relative
errors of flow variables is used in the whole field, with the relative error of velocity ¢% as an example:

B fg[(ﬁ 1)+ (=) + (W —w)?]1dQ

r

x 100%, (59

L)[ﬁ2 +72 +w2]dQ

where i1, v,w and u,v,w are the results of CFD and SCOLDDS, respectively.
) Proportions of flow variables of each order in the whole field
In order to understand the contribution of each order of flow variables to the total flow of the SCOLDDS, eq.

(60) is used to calculate their proportions, as is shown below. Take velocity proportion P as an example:
i+ a2

" = x 100%, (60)
(o + a2

where |ugl,|vl,[wy| are the absolute values of each component of the velocity field (such as [|uy| = |ax&il k
does not sum up), and |ul,|v],|w| are the absolute values of the velocity field (such as |u| = |ay&|), obtained with the
SCOLDDS method, respectively.
5.2 The 3D Compressible Laminar Backward-Facing Step Flow

With this example, we will try to find the answers to following questions:

(D How can the solutions to low-dimensional dynamical systems be quantitatively compariable with CFD
results?

(2) What is the accuracy of the quantitative comparison between the results of SCOLDDS and CFD?

(3) What is the spatiotemporal evolution of SCOBs with the development of the flow field?
5.2.1 Research Problem

The dimensionless parameters of the 3D compressible laminar backward-facing step flow (fig. 3) are Re =

h
poxhixuo _ 1120, Ma = 0.74833148, Pr = 0.72. The finite volume method is used to solve the 3D unsteady

compressible Navier-Stokes equations. Orthogonal meshes with equal spacings are used, M, xM,xM,=85x
41x41, (Ax,Ay,Az) = (2.0,1.0,1.0)m, At =0.1 s.

The lower part of the left boundary is a nonslip backward-facing step, the upper part of the left boundary is an
inflow boundary, the right boundary is a continuous outflow boundary, and the surrounding are nonslip solid wall
boundaries. The height of the backward-facing step is # =20 m. The inflow velocity and density at the backward-
facing step of the left boundary are ug = (ug,vo,wo) = (0.56,0.0,0.0) m/s and po = 1.0 kg/m?, respectively, u=
0.01 Pa-s.
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Fig. 3 The 3D sketch map of the compressible laminar backward-facing step flow

The SCOBs with truncation N = 3 are used to construct the SCOLDDS model for compressible Navier-Stokes
equations, and their solutions are compared with CFD results quantitatively in real time.
5.2.2  Numerical Experiments Predictability on the Low-Dimensional Dynamical System Models

In order to understand why the SCOBs are the key to obtaining the SCOLDDS, which ensures that the
approximate solution to the SCOLDDS is in the attraction domain of the numerical solution of CFD (and the
infinite-dimensional Navier-Stokes equations), a set of numerical experiments is conducted on the predictability of
low-dimensional dynamical system models based on spatial bases and SCOBs with 3D compressible laminar
backstage step flow. In the numerical experiments the velocity errors of various low-dimensional dynamical system
models (such as POD bases, POD bases with a time interval, spatial optimal bases, SCOBs with random initial bases

or POD initial bases) are shown in fig. 4.

— 3.4~3.8 s POD bases
« 3.4~3.8 s OPT bases

3.4~4.2 s POD bases (200 sections)

1 — 3.4~4.2 s POD bases (400 sections)

— 3.4~4.2 s POD bases (2 stages)
3.4~4.2 s POD bases (4 stages)

— 3.4~3.8 s 3 OPT bases
4.0~4.2 s 3 OPT bases

5 + random 3 OPT bases

N

e

velocity relative error &,/ %

(=]

34 3638 40 42
time /s
Fig. 4 Comparison of the evolution curves of the velocity errors with time in the whole field of low-dimensional dynamical system models constructed by
POD bases, POD bases with a time interval, spatial optimal bases, SCOBs with random initial bases or POD initial bases

In the following numerical experiments, the low-dimensional dynamical system models are constructed with
POD bases, POD bases with a time interval, spatial optimal bases, SCOBs with random initial bases or POD initial
bases, and the entire field's velocity errors of each approximate flow field are calculated by eq. (59). Four groups of
test cases are studied.

1) Low-dimensional dynamical system models based on POD bases and SCOBs obtained in the period of
34~38s

(D In the period of 3.4 ~ 3.8 s, 200 snapshot POD bases are constructed, and then, the 1st 30 POD bases are
used to obtain the low-dimensional dynamical system model through the Galerkin projection, and the approximate
flow field of 3.4 ~ 4.2 s is obtained with the model.

@ In the period of 3.4 ~3.8 s, the 3rd order spatial optimal bases are constructed; the low-dimensional
dynamical system model is obtained through the Galerkin projection, and the approximate flow field of 3.4 ~ 4.2 s is

obtained with the model.

2) Low-dimensional dynamical system models based on POD bases and SCOBs obtained in the period of
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34~42s

@D In the period of 3.4 ~ 4.2 s, 200 snapshot POD bases are constructed; the 1st 30 POD bases are then used to
obtain the low-dimensional dynamical system model through the Galerkin projection, and the approximate flow field
of 3.4 ~ 4.2 s is obtained with the model.

2 In the period of 3.4 ~ 4.2 s, 400 snapshot POD bases are constructed; the 1st 30 POD bases are then used to
obtain the low-dimensional dynamical system model through the Galerkin projection, and the approximate flow field
of 3.4 ~ 4.2 s is obtained by using the model.

3) Low-dimensional dynamical system models based on POD bases and SCOBs obtained in the multiple short
periods

(D In the periods of 3.4 ~ 3.8 s and 3.8 ~ 4.2 s, 200 snapshot POD bases are constructed for each period; the 1st
30 POD bases are then used to obtain the low-dimensional dynamical system model through the Galerkin projection
for each period, and the approximate flow field of 3.4 ~ 4.2 s is obtained with this 2-time-interval model.

) In the periods of 3.4 ~3.6's,3.6~3.8s,3.8~4.0 s and 4.0 ~ 4.2 s, 200 snapshot POD bases are constructed
for each period; the 1st 30 POD bases are then used to obtain the low-dimensional dynamical system model through
the Galerkin projection for each period, and the approximate flow field of 3.4 ~ 4.2 s is obtained with this 4-time-
interval model.

4) Low-dimensional dynamical system models based on SCOBs

(D In the period of 3.4 ~3.8 s, 3.8 ~4.0 s and 4.0 ~ 4.2 s, 3rd-order SCOBs with 3rd-order POD bases as initial
bases are constructed.

) Third-order SCOBs with 3rd-order random initial bases are constructed; the low-dimensional dynamical
system model is obtained through the Galerkin projection, and the approximate flow field of 3.4 ~ 4.2 s is obtained
with these models.

From fig. 4, it can be seen that:

(a) The dynamical system model based on spatial bases (including POD bases and spatial optimal bases) has
fewer errors in the period of generating these bases, but the error becomes continually larger in the following time.
Therefore, the low-dimensional dynamical system model based on spatial bases (including POD bases and spatial
optimal bases) is not predictable.

(b) The error of the low-dimensional dynamical system model built on spatial bases constructed with a set of
shorten period of data is smaller than that of with a set of longer period of data.

(c) The low-dimensional dynamical system model built on the SCOBs with random initial bases or POD initial
bases can accurately approximate the CFD results, and the interval of solving SCOBs is not limited by the constrans
of ergodic condition of each state in the snapshot-POD, and which can be from each CFD time step (df) to any CFD
time steps. At the same time, because the calculation of seeking the SCOBs does not rely on big flow field data, and
its optimization convergence is very fast, the SCOLDDS model can be built efficiently and flexibly.

Therefore, one can arrive the conclusion that only with SCOBs, the accurate quantitative comparison between
solutions of the SCOLDDS and the CFD of compressible Navier-Stokes equations is possible.

5.2.3 Results of Construction of SCOLDDS for Compressible Navier-Stokes Equations
With 3D Compressible Laminar Backward-Facing Step Flow

(D Time evolution curves of errors of compressible SCOLDDS models

It can be seen from fig. 5 that at the beginning, because the initial iteration bases of velocity, density and
temperature are the 3rd-order POD bases, the errors of flow field variables are large and then decrease rapidly during
the solution SCOBs in the initial short time (N=3, Re=1 120, Ma=0.748 331 48, Pr=0.72). Second, the whole field
error of the approximate flow field of the compressible SCOLDDS is kept below 0.01%, which shows that the
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average error at each point is kept below 0.01%/(85x41x41) = 7x 1078%.

(2 Time evolution of the flow field: CFD vs. OLDDS

From fig. 6, one can see the time evolution of the numerical solution with the finite volume method of Navier-
Stokes equations and the approximate optimal solution of the 3rd-order SCOLDDS. The initial error is still obvious
even after the optimal optimization because the POD bases are used as the initial iteration bases. However, after

several optimal optimization processes, the approximate optimal solution of the 3rd-order SCOLDDS is very close
to the numerical solution of CFD.
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Fig. 5 Time evolution curves of errors of velocity, density and temperature
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Fig. 6 Comparison of time evolution of flow fields of CFD and OLDDS, from left to right, 7 = 100 5,300 5,5 000 5,9 990 s:

(a) velocity field u; (b) velocity field v; (c) velocity field w; (d) density field p; (¢) temperature field 7
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Therefore, the modelling method of SCOLDDS can obtain a high-precision approximate solution compared
with the numerical solution of CFD and ensure that the optimal solution of the SCOLDDS with truncation N =3 is
within the attraction domain of the numerical solution of the high-dimensional CFD (and with the infinite-
dimensional Navier-Stokes equations). Through analysis of the characteristics of the SCOLDDS with truncation
N =3 of the laminar backward-facing step, the exact dynamical system characteristics of the Navier-Stokes
equations can be obtained.

(3 Time evolution curves of coefficients of SCOBs

It can be seen from fig. 7 that, first, the coefficients of the 1st-order spatiotemporal-coupling velocity optimal
basis &, density optimal basis £ and temperature optimal basis r are one-order-magnitude larger than those of the
2nd- and the 3rd-order SCOBs. Therefore, the 1st-order SCOBs are dominant. Second, the coefficients of the 1st-
order SCOBs have a lower evolution frequency with time, while the coefficients of the 2nd-order and the 3rd-order

SCOBs have higher evolution frequencies with time.
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Fig. 7 Time evolution curves of coefficients of velocity basis €, density basis { and temperature basis 1

(@) Time evolution of spatiotemporal-coupling optimal velocity basis & density basis ¢ and temperature basis 7
It can be seen from fig. 8 that, for the laminar backward-facing step flow, the 1st-order spatiotemporal-coupling
optimal velocity basis £, density basis ¢ and temperature basis  dominate the time evolution of the flow field, and

all evolve with the development of the flow, but their 2nd- and 3rd-order optimal bases basically do not evolve with
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time. However, the 1st-, 2nd- and 3rd-order bases of velocity bases ¢” and ¢, which are not dominant in the flow
field, have obvious evolution with time. This may be because the 1st-order spatiotemporal-coupling optimal velocity
bases &' and £, which are not dominant in the flow field, have weak control over their 2nd- and 3rd-order SCOBs,

the latter 2 can evolve synchronously with the development of the flow.
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A

I
©
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Fig.8 Time evolution of spatiotemporal-coupling optimal velocity basis £, density basis ¢ and temperature basis 1:
from left to right, 7 = 100 5,5 000 5,9 990 s

Through the observation of figs. 7 and 8, one can draw the following conclusion: it is SCOBs that make
SCOLDDS compare with CFD rigorously in numerical solution.
5.3 The 3D Compressible Turbulent Straight Jet

In this example, the answers to following questions will be found:

(D Can the solutions of low-dimensional dynamical systems of compressible Navier-Stokes equations be
quantitatively comparable with those of the large-eddy simulation (LES) of turbulent results?

(2 How is the accuracy of quantitative comparison between the results of SCOLDDS and LES?

(3 How is the importance of each order of decomposition, i.e., how are the proportions (eq. (60)) of each order

of approximate flow variables in the turbulent jet flow with truncation N = 3 and 5, respectively?
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5.3.1 Research Problem

The dimensionless parameters of the 3D compressible turbulent straight jet flow (fig. 9) are Re=
Piet X ¢jet X Ujet _ _
——————— =416 081.77, Ma = 0.423451 80, Pr=0.72.

u
y

> u

G——) Ujet
(@)

v

z

Fig. 9 The 3D sketch map of the compressible turbulent straight jet flow

An LES method”” based on the Favre filter™” and Smagorinsky subgrid model™”’, where Smagorinsky
constant C; =0.1, is used to solve the 3D unsteady compressible LES equations. Orthogonal meshes with equal
spacings are used, M, X My, X M, = 105x61x61, (Ax,Ay,Az) = (1.5,1.0,1.0) m, Az = 0.000 58 s.

The diameter of the turbulent straight jet at the centre (y = z =31 m) of the yOz plane on the left boundary is
D =6m, its inflow velocity is uje = (Ujer, View, Wier) = (2.0,0.0,0.0) m/s, and its inflow density is pje =
0.627 59 kg/m?, u = 0.000 018 1 Pa-s. The inflow velocity and inflow density in the non-jet area on the left boundary
are ug = (up,vo,wo) = (0.3,0.0,0.0)m/s and po=1.16103 kg/m?, respectively, u=0.0000181Pa-s. The right
boundary is a continuous outflow boundary, and the surrounding are nonslip solid wall boundaries.

The LES code is combined with the SCOLDDS modelling theory of 3D compressible Navier-Stokes equations
to develop a 3D compressible turbulent LES and SCOLDDS modelling toolkit CLOT3D (compressible LES and
SCOLDDS tools of 3D compressible Navier-Stokes equations). With this software package, the LES numerical
solution of the turbulent straight jet is obtained, which is compared with the SCOLDDS model of compressible
Navier-Stokes equations (using SCOBs with truncation N = 3 and 5, respectively).

5.3.2 The SCOLDDS of the SCOBs With Truncation N =3

(D Time evolution curves of errors of compressible SCOLDDS models

From fig. 10, one can see that, given the turbulent straight jet flow, the time evolution of the velocity error is
always very violent, but the whole field error is not large, basically below 0.006%. Since the whole field errors of
density and temperature are very small (less than 0.001%), their time evolution process cannot be seen in the figure
(Re=416081.77, Ma=0.423 451 80, Pr=0.72, the same below). Second, because the velocity error of the approximate
flow field of the compressible SCOLDDS is kept below 0.006% in the whole field, the average velocity error at each
point is kept below 0.006%/(105x 61 x61) = 1.5 x 108%.
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Fig. 10 Time evolution curves of errors of velocity, density and temperature
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) Time evolution of the flow field: LES ~ SCOLDDS

It can be seen from fig. 11 that, for the first time, with the SCOLDDS model (N = 3) for the compressible 3D
Navier-Stokes equations can very accurately obtain the numerical results given by the LES method, and from the
initial moment, the approximate optimal solution of the SCOLDDS with truncation N = 3 can quickly approach the

numerical solution of LES.

@
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(b)
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Y
{

SCOLDDS

LES

SCOLDDS

Ill ‘

(d)
LES

SCOLDDSH]

—~
J
~

LES

SCOLDDS

Fig. 11 Comparison of time evolution of turbulent flow fields between the LES and the SCOLDDS, from left to right, 7 = 100's,5 000's, 16 670 s:
(a) velocity field u; (b) velocity field v; (c) velocity field w; (d) density field p; () temperature field T

Therefore, a high-precision approximate solution can be obtained with the SCOLDDS modelling method,
which guarantees for the first time that the optimal solution of the SCOLDDS has the same attraction domain as the
numerical solution of the complex turbulent LES. Through analysis of the characteristics of SCOLDDS of the
turbulent straight straight jet flow, the accurate characteristics of the turbulent dynamical system of the LES
equations for the turbulent straight jet flow can be obtained.

(3 Time evolution curves of the proportion of each order of approximate flow variables (see eq. (60))

It can be seen from fig. 12 that, the 1st-order velocity field, the density field and the temperature field account
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for more than 99.99% of the total flow field, the 2nd- and 3rd-order velocity fields account for less than 0.001 7% of
the total flow field, while the 2nd- and 3rd-order density fields and temperature fields account for less than 0.000 1%
of the total flow field, respectively. Therefore, the 1st-order SCOBs play very important leading roles, while the
2nd- and 3rd-order SCOBs play auxiliary roles.

(@

I
1
0.008 6 0.000 925
S
S,
0.008 2 ~
© & 0.000 875
~ et P
Qb_ < — P
0.007 8 — 0.000 825 P
1
0.007 4 0.000 775
0 100 200 300 0 100 200 300
time /s time 7/
(b) —u’
0.001 6 —p!
s 0.000 08 e
~ _ T2
§ 0.001 4 1“
= =<' 0.000 04
0.001 2
0
0 100 . 200 300 0 100 . 200 300
time /s time7/s
(©)
0.000 12
0.000 8
N
~ 0.00008
°\° S en
~
=2 0.000 4 -t
= =0.000 04
0 0
0 100 200 300 0 100 . 200 300
time7/s time 7/

Fig. 12 Time evolution curves of the proportion of each order of approximate flow variables: (a) the 1st-order; (b) the 2nd-order; (c) the 3rd-order

Through the proportion study, one can quantitatively know the accuracy of the approximate optimal solution of
the SCOLDDS on the one hand, and on the other hand, one can determine the dimension of the SCOBs through the
proportion study of each order of flow fields.

(4) Time evolution curves of coefficients of SCOBs

It can be seen from fig. 13 that, the coefficients of the 1st-order spatiotemporal-coupling optimal velocity basis,
density basis and temperature basis are 2-orders-magnitude larger than those of the 2nd- and 3rd-order SCOBs;
therefore, the 1st-order SCOBs are dominant. Second, even in the turbulent state, the time evolution frequency of the
coefficients of the 1st-order SCOBs is still low, while those of the coefficients of the 2nd- and 3rd-order SCOBs are
much higher than that in the laminar state, and the 2 are basically the same.

(® Time evolution of spatiotemporal-coupling optimal velocity basis &, density basis ¢ and temperature basis 7

It can be seen from fig. 14 that, for the time evolution of the spatiotemporal-coupling optimal velocity basis £,
density basis ¢ and temperature basis n for the turbulent straight jet flow, not only the 1st-order spatiotemporal-

coupling optimal velocity basis £, density basis ¢ and temperature basis 77 evolve into typical turbulent flow patterns
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with the development of the flow, but the 2nd- and 3rd-order turbulence structures evolve with time to develop into
many small-scale turbulent structures. It is the complex spatiotemporal-coupling evolution of the 2nd- and 3rd-order
SCOBs that enable the SCOLDDS to well simulate and analyse turbulent flow.
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Fig. 13 Time evolution curves of coefficients of velocity basis €, density basis { and temperature basis 1

Through the observation of figs. 13 and 14, one can draw the following conclusion: the fundamental reason
why the theory of the SCOLDDS can obtain high accuracy and can be comparable to the numerical solution of LES
is that, the SCOBs reflecting the characteristics of turbulence pulsation are adopted.

5.3.3 The SCOLDDS of the SCOBs With Truncation N =5

(D Time evolution curves of errors of compressible SCOLDDS models

(@ Time evolution of the flow field: LES ~ OLDDS

Since the results of the SCOBs (OLDDS) with truncation N =5 are almost identical to those with truncation
N =3 (see fig. 11), they are not shown.

Compare figs. 10 and 15, one can see that the average global accuracy of the approximate solution of the
SCOLDDS (0.002%) with truncation N = 5 is higher than that of those with truncation N = 3 (0.003%).

(3 Time evolution curves of the proportion of each order of approximate flow variables

It can be seen from figs. 12 and 16 that, the 1st 3 orders of flow field proportions of the SCOLDDS with
truncation N =5 are basically the same as that of the SCOLDDS with truncation N = 3, but the evolution laws with
time is different. An interesting phenomenon can also be seen from figs. 12 and 16 that, from the third-order flow

field, the average value of its proportion is approximately half of that of the lower one, that is, the average value of
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the proportion between the adjacent higher-order flow fields is an inverse series of 0.5.

—~
o

~

g g i

w o= (e -z

s

Fig. 14 Time evolution of spatiotemporal-coupling optimal velocity basis €, density basis { and temperature basis 7:

from left to right, # = 100 5,5 000 s, 16 670 s
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Fig. 15 Time evolution curves of errors of velocity, density and temperature
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Fig. 16 Time evolution curves of the proportion of each order of approximate flow variables: (a) the 1st order; (b) the 2nd order;

(c) the 3rd order; (d) the 4th order; (e) the 5th order

@ Time evolution curves of coefficients of SCOBs
It can be seen from figs. 13 and 17 that, first, the coefficient evolution laws of their 1st-order spatiotemporal-
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coupling velocity optimal basis &, density basis { and temperature basis n are basically the same, and they are 2-
order-magnitude larger than the coefficients of their 2nd- and 3rd-order SCOBs. Second, for the SCOLDDS with
truncation N =5, the coefficients of the 4th-order SCOBs evolve with time with almost the same frequency as the
coefficients of the 2nd- and 3rd-order SCOBs, but the coefficients of the 5th-order SCOBs evolve with a time with

much higher frequency than those of the previous ones.
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Fig. 17 Time evolution curves of coefficients of velocity basis €, density basis ¢ and temperature basis 1

(® Time evolution of spatiotemporal-coupling optimalvelocity basis &, density basis ¢ and temperature basis 7

From figs. 14 and 18, in the time evolution images of the spatiotemporal-coupling optimal velocity basis £,
density basis ¢ and temperature basis 7, for the high-order SCOBs (N > 1), odd- and even-order SCOBs pairs are
formed, and there are similar evolutions of morphological characteristics between the odd- and even-order SCOBs.
However, in the Sth-order SCOBs, there are small-scale spatiotemporal-coupling evolution structures corresponding
to high wave numbers.

Through the observation of figs. 13 and 14, as well as figs. 17 and 18, one can draw the following conclusion:
for the compressible turbulent straight jet, the SCOLDDS model with truncation N =3 can compare with CFD
solution with high accuracy. If it is necessary to further analyse the spatiotemporal-coupling evolution process and
mechanism of turbulent small-scale structures, the SCOLDDS model with truncation N = 5 with higher accuracy can

be used.
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Fig. 18 Time evolution of spatiotemporal-coupling optimal velocity basis &, density basis ¢ and temperature basis 7:
from left to right, £ = 100 s,3 000 s,6 000 s

6 Conclusions and the Future Work

6.1 Conclusions

From the above results, one can draw the following conclusions.

First, the concept of traditional spectrum expansion based on the separation of variables and known spatial
basis functions is extended to the spatiotemporal-coupling spectrum expansion with the SCOBs satisfying various
complex boundary conditions and physical constraints.

Second, the numerical experiment (fig. 4) shows that all low-dimensional dynamical system models based on
spatial bases are not predictable.

Third, the accurate quantitative comparison between solutions of the SCOLDDS and the CFD for compressible
Navier-Stokes equations shows that, the whole field error is typically below 1072%, and the average error at each cell
point is below 1078%, thus ensuring that the approximate solution of the SCOLDDS is in the attraction domain of the
numerical solution of the CFD (and the infinite-dimensional Navier-Stokes equations). Then, the accurate dynamical
system characteristics of the Navier-Stokes equations can be obtained through analysis of the characteristics of
SCOLDDS.

Fourth, the solution of the SCOLDDS for compressible Navier-Stokes equations can be used to approximate
the numerical solution of LES equations, which shows through analysis of the characteristics of the SCOLDDS for
the Navier-Stokes equations, the accurate turbulent dynamical system characteristics of the LES equation can be
obtained.

Finally, using SCOB:s is the key to constructing the SCOLDDS. It can obtain the qualitative analysis results of
the dynamical system and be quantitatively compared to real flow with very low-dimensional spatiotemporal-

coupling intrinsic bases, to ensure the characteristics of SCOLDDS are the dynamic characteristics of the real flow
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(such as turbulence).
6.2 The Future Work

The traditional PDE dynamical system models are based on spatial bases, and the objects of dynamical system
analysis are limited to the time evolution characteristics of the coefficients of spatial bases, such as bifurcation and
chaos. In this study, the modelling theory of SCOLDDS is proposed, and the SCOLDDS model, which is
quantitatively comparable to the solution of the infinite-dimensional dynamical system, is obtained, which provides
a new research idea and possibility for understanding the characteristics of SCOLDDS for complex flow including
compressible turbulence. Therefore, it is necessary to develop a set of corresponding SCOLDDS analysis methods to
study the evolution rules and characteristics of complex spatiotemporal-coupling dynamics of real compressible
turbulence.

This paper focuses on the modelling theory for OLDDS with spatiotemporal-coupling for compressible flow.
The results of the modelling theory of SCOLDDS for incompressible flow will be published elsewhere.

The method of optimal low-dimensional dynamical systems based on spatiotemporal bases is successfully used

to the develop a new LES method for compressible turbulent flows, which will published elsewhere.
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Appendix A The Conjugate Gradient Numerical Optimization Algorithm

11 is used to optimize eq. (17). The specific steps of the algorithm are as follow:

The conjugate gradient method
1) A set of initial bases f(o), maximum iteration steps imax, initial penalty factor 49, optimal bases convergence condition &
and orthogonality convergence condition &, are given.
2)Leti=0.
3) Substitute fg) into the equation of a; and solve ag).
4) Substitute f/ii) and ag) into the generalized optimal objective functional gradient equation to calculate VJ2.
5) Let g@ (x) = B (x) = -V J4.
6) If g(i) (x) =0, proceed to step 11); otherwise, let g}j*” = ,(:).
7) Use the 1D search method " to find p* > 0, so that

BETD 1+ p*hD) = min[ 78D + phD)p > 0].
P

8) Let & = £ +p*h.
9) Use £, to perform steps 3) and 4) to obtain Zzl(:) and ;l,(f), respectively, and perform step 5) to calculate V.J&.
10) Uniting &, check whether VJ€ = 0 and the maximum errors of orthogonality conditions &1 and &, are satisfied. If both are
satisfied, output the result and stop the calculation. Otherwise, if £ is not satisfied, let
gD =y e,
ROD = gl+D) 4 g o)
where
N (gD — g gli+D)y
o lg®1P

and implement step 11). If only &, is not satisfied, let 1 = 104? and execute step 3).

s

11) If i > imax, the calculation fails and stops. Otherwise, leti =i+ 1, f,((”l) = Sl(ci), proceed to step 7).
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